Skip to main content

Mendelevium Information

Mendelevium Information
Scroll Down To Download

Mendelevium Element

Mendelevium is a synthetic element with the symbol Md (formerly Mv) and atomic number 101. A metallic radioactive transuranic element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopic quantities through neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of sixteen mendelevium isotopes are known, the most stable being 258Md with a half-life of 51 days; nevertheless, the shorter-lived 256Md (half-life 1.17 hours) is most commonly used in chemistry because it can be produced on a larger scale.

Mendelevium was discovered by bombarding einsteinium with alpha particles in 1955, the same method still used to produce it today. It was named after Dmitri Mendeleev, father of the periodic table of the chemical elements. Using available microgram quantities of the isotope einsteinium-253, over a million mendelevium atoms may be produced each hour. The chemistry of mendelevium is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. All of the isotopes of mendelevium have relatively short half-lives, there are currently no uses for it outside basic scientific research, and only small amounts are produced.

In about a dozen repetitions of the experiment, the team of scientists produced 17 atoms of mendelevium, which were identified by the ion-exchange adsorption-elution method (mendelevium behaved like its rare-earth homologue thulium) and by the electron-capture decay of its daughter isotope fermium-256. Fifteen other isotopes of mendelevium, all radioactive, have been discovered. The stablest is mendelevium-258 (51.5-day half-life). Studied by means of radioactive tracer techniques, mendelevium exhibits a predominant +3 oxidation state, as would be expected by its position in the actinoid series; a slightly stable +2 oxidation state is also known.

Movies ColdStar is The Best Website/Platform For Hollywood HD Movies. We Provide Direct Download Links For Fast And Secure Downloading. Just Click On Download Button.


Join Telegram For Movies Request :- Join



You have to wait 15 seconds.

Direct Download


Comments